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1. INTRODUCTION AND STATEMENTS OF RESULT

In the past few years, there has been a growing interest in the study of
nonstandard inner products and the properties of the orthogonal polyno-
mials which they generate. Among these, Sobolev-type inner products and
the corresponding Sobolev-type orthogonal polynomials are of particular
interest. As in the classical theory of orthogonal polynomials, the
asymptotic behavior of sequences of Sobolev-type orthogonal polynomials
plays a central role in questions related to their application in approxima-
tion processes, in particular, in Fourier expansions.

This paper is devoted to the study of the asymptotic properties of the so-
called discrete Sobolev-type orthogonal polynomials on the unit circle.

Let + be a probability measure whose support consists of an infinite set
of points contained in [0, 2?]. Let [.n]n�0 , .n(z)=kn zn+ lower degree
terms, kn>0, be the sequence of orthonormal polynomials with respect to
+ In all that follows we assume that limn � � .n(0)�kn=0, and denote this
by + # N (+ belongs to Nevai's class of measures). A well-known result of
Rakhmanov [10] states that if +$>0 a.e. on [0, 2?] then + # N. Along
with the sequence of orthonormal polynomials [.n]n�0 , we consider the
sequence [.n*]n�0 of the reversed polynomials, which as usual are defined
by .n*(z)=zn.n(1�z� ).

Definition 1. Let + be a probability measure with an infinite subset of
the interval [0, 2?] as its support. A discrete Sobolev inner product on the
unit circle is given by

( f, g) =|
2?

0
f (ei%) g(ei%) d+(%)+ f (Z) Ag(Z)H, (1)

where f (Z)=( f (z1), ..., f (l1)(z1), ..., f (zm), ..., f (lm)(zm)), A is an M_M
positive semi-definite matrix, M=l1+ } } } +lm+m, |zi |>1, i=1, 2, ..., m
and g(Z)H denotes the conjugate transpose of the vector g(Z).

Since A is positive semi-definite, the inner product ( } , } ) is positive
definite. Therefore, there exists a sequence [�n]n�0 , �n(z)=#nzn+ lower
degree terms, #n>0, which is orthonormal with respect to (1). We are
interested in the asymptotic behavior of the sequence of ratios [�n �.n]n�0 ,
commonly called relative asymptotics of �n with respect to .n . We will
show that if + # N and A is positive definite, then there is relative
asymptotics (see (2) below). Since for + # N the sequence [.n]n�0 is
known to have ratio asymptotics, one immediately derives ratio
asymptotics for the sequence [�n]n�0 (see (4)) as well as other types of
asymptotic relations (see (5)).
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Similar results have been obtained for the case when the measure + is
supported on a interval of the real line. We wish to refer to several papers
in this setting from which we have borrowed some ideas. In [8], a very
simple case of Sobolev orthogonal polynomials on the real line is con-
sidered in which the discrete part has one point and only the first derivative
appears. This paper contains a very nice algebraic technique which we have
adapted for our purpose. The results of [8] were substantially improved in
[6], the results of which are comparable in generality with the ones
exhibited in this paper for the case of the unit circle. Our paper combines
ideas from [6] and [8] but remains closer to [8] in the sense that greater
emphasis is placed in the use of the kernel function in order to derive
appropriate algebraic relations to deal with the connection between the
polynomials �n and the .n . The analogue of some determinantal expres-
sions which appear in [1] have also been very useful for us.

Discrete Sobolev-type orthogonal polynomials on the unit circle have
also been studied before. In [2], the case when m=1, l1=1, |z1|=1; and
+ # N was treated. In [5], the authors consider m different points but only
first derivative in the discrete part.

In the following the symbol �� means uniform convergence on compact
subsets of the indicated region. We prove:

Theorem 1. Consider an inner product of type (1) such that + # N and
the matrix A is positive definite. It holds

� (k)
n (z)

. (k)
n (z)

�� `
m

i=1
\ zi (z&z i)

|zi | (zzi&1)+
li+1

, |z|>1, k=0, 1, ..., (2)

�n(z)
.n*(z)

��0, |z|<1,

lim
n � �

kn

#n
= `

m

i=1

|zi |
li+1. (3)

An immediate consequence of Theorem 1 is

Corollary 1. On the region [z # C: |z|>1]"[zj]m
j=1 , we have

� (k)
n+1(z)

� (k)
n (z)

��z, (4)

� (k+1)
n (z)

n� (k)
n (z)

��
1
z

, (5)

for k=0, 1, ....
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Remark. Notice that (3) follows from (2) if we make z � �, but in the
proof of Theorem 1 we deduce first (3), and then we use this information
to get (2).

2. NOTATION AND BASIC TOOLS ABOUT
ASYMPTOTIC PROPERTIES

Following the notation introduced in definition 1, if

Z=( z1 , ..., z1

l1+1

, ..., zm , ..., zm

lm+1

)

then

f (Z)=( f (z1), f $(z1), ..., f (l1)(z1), ..., f (zm), f $(zm), ..., f (lm)(zm)).

Let + be a probability measure whose support contains infinitely many
points of the interval [0, 2?] as its support. Assume that + # N and let
[.n]n�0 , .n(z)=kn zn+lower degree terms, kn>0, be the sequence of
orthonormal polynomials with respect to this measure. Let

Kn(z, ')= :
n&1

k=0

.k(z) .k(')

be the kernel polynomials associated to +. Then

K (i, j)
n (z, ')= :

n&1

k=0

. (i)
k (z) .( j)

k (').

It is very well known (cf. [10]) that

.n+1(z)
.n(z)

��z, |z|>1,

and using the same technique as in the proof of Lemma 1 below, we get

. (k)
n+1(z)

. (k)
n (z)

��z, |z|>1, k=0, 1, ..., (6)

. (k+1)
n (z)

n. (k)
n (z)

��
1
z

, |z|>1, k=0, 1, .... (7)
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We also point out the following result that can be found in [9] Theorem 4,

.n*(z)

.n(z)
��0, |z|>1, (8)

or equivalently

.n(z)

.n*(z)
��0, |z|<1. (9)

Now, we include some auxiliary results.

Lemma 1. If + # N then

K (i, j)
n (z, !)

.(i)
n (z) . ( j)

n (!)
��

1

z!� &1
, |z|, |!|>1, i, j=0, 1, ....

Proof. First, from (7), we have

. (q)
n (z)

. ( p)
n (z)

��0, |z|>1, p>q�0. (10)

We claim that

.* (q)
n (z)

. ( p)
n (z)

��0, |z|>1, p�q�0. (11)

By using (6), we only need to prove

.* ( p)
n (z)

. ( p)
n (z)

��0, |z|>1. (12)

For p=1, we have (8). We proceed by induction; let us assume that (12)
holds for p=k and let us prove that (12) also holds for p=k+1. In fact,
since

.* (k+1)
n (z)

. (k+1)
n (z)

=
. (k)

n (z)
. (k+1)

n (z) \
.* (k)

n (z)
.(k)

n (z) +
$
+

.* (k)
n (z)

. (k)
n (z)

,

using (6) and (10), we deduce that for p=k+1 the result is also true.
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Next, notice that for s, t=0, 1, ...,

K (s, t)
n (z, w)=

�t

�wt

�s

�zs \.n*(z) .n*(w)&.n(z) .n(w)
1&w� z +

= :
s

l=0

:
t

r=0 \
t
r+\

s
l+ [.* (l )

n (z) .* (r)
n (w)&. (l )

n (z) . (r)
n (w)]

_
�t&r

�wt&r

�s&l

�zs&l

1
1&w� z

. (13)

Thus the lemma follows from (10), (11), and (13). K

Corollary 2. If + # N then

K (i, j)
n (z, !)

. ( p)
n (z) . (q)

n (!)
��0, |z|, |!|>1

for p�i, q> j or p>i, q� j�0.

Lemma 2. If + # N then

K (0, j)
n (z, !)

.n*(z) . ( j)
n (!)

��0, |z|<1, |!|>1, j=0, 1, ....

Proof. This result easily follows from (9) and (13). K

Lemma 3. If + # N, we have

1
. (i)

n (z)
��0, |z|>1, i=0, 1, ....

Proof. It is a straightforward consequence of (6). K

Lemma 4. Let Q be an M_M nonsingular matrix, and u, x two
M-column vectors. The following identity holds:

1&xTQ&1u=
det[Q&uxT]

det Q
.

Proof. We consider the matrix identities

\Q
xT

u
1+\

IM

01_M

&Q&1u
1 +=\Q

xT

0M_1

1&xTQ&1u+
\ IM

01_M

&u
1 +\Q

xT

u
1+=\Q&uxT

xT

0M_1

1 + ,
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where 0n_m denotes the zero matrix of order n_m. Now taking deter-
minants in both expressions we get the result. K

Let Kn be the M_M matrix

Kn(z1 , z1) } } } K (l1, 0)
n (z1 , z1) } } } Kn(zm , z1) } } } K (lm , 0)

n (zm , z1)

K (0, 1)
n (z1 , z1) } } } K (l1, 1)

n (z1 , z1) } } } K (0, 1)
n (zm , z1) } } } K (lm , 1)

n (zm , z1)

b b b b

K (0, l1)
n (z1 , z1) } } } K (l1, l1)

n (z1 , z1) } } } K (0, l1)
n (zm , z1) } } } K (lm , l1)

n (zm , z1)

b b b b .

Kn(z1 , zm) } } } K (l1, 0)
n (z1 , zm) } } } Kn(zm , zm) } } } K (lm , 0)

n (zm , zm)

K (0, 1)
n (z1 , zm) } } } K (l1, 1)

n (z1 , zm) } } } K (0, 1)
n (zm , zm) } } } K (lm , 1)

n (zm , zm)

b b b b

K (0, lm)
n (z1 , zm) } } } K (l1, lm)

n (z1 , zm) } } } K (0, lm)
n (zm , zm) } } } K (lm , lm)

n (zm , zm)

(14)

This matrix can be described by blocks. The r, s block is the
(lr+1)_(ls+1) matrix

(K ( j, i)
n (zs , zr ))

j=0, ..., ls
0=0, ..., lr

,

where r, s=1, ..., m.

Theorem 2. The matrix Kn is positive definite for n�M when zi {zj ,
i, j=1, ..., m.

Proof. Let us consider the matrix

.0(z1) .1(z1) } } } .n&1(z1)

.$0(z1) .$1(z1) } } } .$n&1(z1)

b b b

.(l1)
0 (z1) . (l1)

1 (z1) } } } . (l1)
n&1(z1)

G := b b b .

.0(zm) .1(zm) } } } .n&1(zm)

.$0(zm) .$1(zm) } } } .$n&1(zm)

b b b

. (lm)
0 (zm) . (lm)

1 (zm) } } } . (lm)
n&1(zm)
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Notice that

Kn=G� GT.

Using this factorization of the matrix Kn , if we denote by x a row vector
of size M, it holds

x� G� GTxT=xG(xG)T�0.

So, in order to prove that Kn is a positive definite matrix it is sufficient to
prove that the matrix G is non-singular. This follows from the fact that G
is the matrix of a Hermite interpolation problem (expressed in the basis
[.i]). K

Remark. We point out that in the proof above we have not used the
orthogonality property of the sequence of polynomials [.n]n�0. In fact, we
have only used that \n�0, deg .n=n.

Let us consider the following function g(z, w)=1�(zw&1). We denote

g(i, j)(z, w) :=
�i+ j

�zi �w j g(z, w).

Let Fm be the M_M matrix

g(z1 , z1 ) } } } g (l1, 0)
1 (z1 , z1 ) } } } g(zm , z1 ) } } } g(lm , 0)(zm , z1 )

g(0, 1)(z1 , z1 ) } } } g(l1, 1)(z1 , z1 ) } } } g(0, 1)(zm , z1 ) } } } g(lm , 1)(zm , z1 )

b b b b

g(0, l1)(z1 , z1 ) } } } g(l1, l1)(z1 , z1 ) } } } g(0, l1)(zm , z1 ) } } } g(lm , l1)(zm , z1 )

b b b b .

g(z1 , zm ) } } } g(l1, 0)(z1 , zm ) } } } g(zm , zm ) } } } g(lm , 0)(zm , zm )

g(0, 1)(z1 , zm ) } } } g(l1, 1)(z1 , zm ) } } } g(0, 1)(zm , zm ) } } } g(lm , 1)(zm , zm )

b b b b

g(0, lm)(z1 , zm ) } } } g(l1, lm)(z1 , zm ) } } } g (0, lm)(zm , zm ) } } } g(lm , lm)(zm , zm )

(15)

This matrix can be described by blocks. The r, s block is an (lr , 1)_(ls+1)
matrix

(g( j, i)(zs , zr )) j=0, ..., ls
i=0, ..., lr

,

where r, s=1, ..., m.
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Theorem 3. The matrix Fm defined in (15) is non-singular.

Proof. Let us suppose that |Fm |=0. In this case the linear dependence
of the rows of the matrix Fm is equivalent to the existence of cij # C,
i=1, ..., m, j=0, ..., li such that the function

f (z)= :
l1

j=0

c1 j g(0, j)(z, z1 )+ } } } + :
lm

j=0

cmj g (0, j)(z, zm )�0

has at each zi a zero of degree at least li+1. Thus, it has at least M zeros,
taking account of multiplicity. But it is immediate to check that

f (z)=
P(z)
Q(z)

,

where P is a polynomial of degree at most M&1 and Q is a polynomial
of degree M. This leads us to a contradiction. K

3. PROOF OF THEOREM 1

First we deduce some algebraic expressions. Expanding �n in terms of
[.j]j�0 , we have

�n(z)=
#n

kn
.n(z)+ :

n&1

k=0

ak, n .k(z), (16)

where

ak, n =|
2?

0
�n(ei%) .k(ei%) d+(%)

=&�n(Z) A.k(Z)H for k=0, 1, ..., n&1.

Substituting this expression in (16), we obtain

�n(z)=
#n

kn
.n(z)&�n(Z) A :

n&1

k=0

.k(Z)H .k(z)

=
#n

kn
.n(z)&�n(Z) AKn(z, Z)T, (17)

where

Kn(z, Z)=(Kn(z, z1), ..., K (0, l1)
n (z, z1), ..., Kn(z, zm), ..., K (0, lm)

n (z, zm)).
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Now, we take consecutive derivatives and we substitute z=z1 , ..., z=zm in
order to eliminate �n(Z). From this last expression it follows that

�(s)
n (z i)=

#n

kn
. (s)

n (zi)&�n(Z) AK (s)
n (zi , Z)T

for i=1, ..., m, s=0, 1, ..., li . So, we get

�n(Z)=
#n

kn
.n(Z)&�n(Z) AKn , (18)

where Kn denotes the M_M matrix defined in (14). From (18), we get

�n(Z)[IM+AKn]=
#n

kn
.n(Z),

where IM denotes the M_M identity matrix. From Theorem 2, Kn is a
positive definite matrix; therefore,

IM+AKn=[K&1
n +A] Kn .

Now, if we take into account that both K&1
n and A are positive definite

matrices, then K&1
n +A is a positive definite matrix. Thus

IM+AKn

is a non-singular matrix because it is the product of two non singular
matrices. Therefore, we can write

�n(Z)=
#n

kn
.n(Z)[IM+AKn]&1.

Let us substitute this expression in (17), multiply it by kn �#n , and divide by
.n(z). Thus we obtain

kn

#n

�n(z)
.n(z)

=1&.n(Z)[IM+AKn]&1 A
Kn(z, Z)T

.n(z)
. (19)

On the other hand, we also have

(�n , .n) =|
2?

0
�n(e i%) .n(ei%) d+(%)+�n(Z) A.n(Z)H,

kn

#n
=

#n

kn
+�n(Z) A.n(Z)H.
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Multiplying by kn�#n and substituting �n(Z), we have

\kn

#n +
2

=1+
kn

#n
.n(Z)[IM+AKn]&1 A.n(Z)H. (20)

Using Lemma 4, we can express (19) as a ratio of determinants

kn

#n

�n(z)
.n(z)

=
det _IM+AKn&A

Kn(z, Z)T

.n(z)
.n(Z)&

det[IM+AKn]
. (21)

Doing the same with (20), we obtain

\kn

#n +
2

=
det[IM+AKn+A.n(Z)T .n(Z)]

det[IM+AKn]

\kn

#n +
2

=
det[IM+AKn+1]

det[IM+AKn]
. (22)

Formulas (21) and (22) are used in order to obtain the asymptotic
behavior of kn �#n and �n(z)�.n(z) for |z|>1.

By assumption A is a positive definite matrix. We can express (22) as

\kn

#n +
2

=
det[A&1+Kn+1]

det[A&1+Kn]
.

Now, we will find the asymptotic behavior of kn �#n :

lim
n � � \kn

#n +
2

= lim
n � �

det[A&1+Kn+1]
det[A&1+Kn]

.

If we introduce the diagonal matrix

4n =diag \ 1
.n(z1)

,
1

.$n(z1)
, ...,

1
. (l1)

n (z1)
, ...,

1
.n(zm)

,
1

.$n(zm)
, ...,

1
. (lm)

n (zm)+ ,

we have

lim
n � � \kn

#n +
2

= lim
n � �

det[4n+1A&14n+1+4n+1Kn+14n+1]

det[4nA&14n+4nKn4n]

det[4n4n]

det[4n+1 4n+1]
.
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The matrix 4n Kn 4n can be described by blocks. The r, s block is an
(lr+1)_(ls+1) matrix

\ K ( j, i)
n (zs , zr)

. ( j)
n (zs) . (i)

n (zr)+
j=0, ..., ls

i=0, ..., lr

,

where r, s=1, ..., m. Using Lemma 1 and Lemma 3, we conclude that

lim
n � �

det[4n+1A&14n+1+4n+1Kn+14n+1]=0,

and we need to compute a limit of the form 0�0, which is undetermined. In
[3], we find a similar situation for a system of equations. We adapt here
some ideas that appear in that work.

For all f, h differentiable functions and &=0, 1, 2, ... it holds

f (&)

h(&) =\ f
h+

(&) h
h(&)& :

&

k=1

F(&, k)
f (&&k)

h(&&k) , (23)

where

F(&, k)=\&
k+

hh(&&k)

h(&) \1
h+

(k)

.

Notice that the coefficients F(&, k) do not depend on the function f. If we
take f =h we get the relation

1+ :
&

k=1

F(&, k)=0. (24)

Now, in

det[4n+1A&14n+1+4n+1Kn+14n+1]

add to the �s&1
p=1 (lp+1)+1+k row, for 1�k�ls and 1�s�m, a linear

combination of the preceding k&1 rows with the coefficients defined by
(23) with

h(z) :=.n+1(z)

and z=zs , then multiply the resulting row by

h(k)(z)
h(z)
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evaluated at z=zs . We also carry out this kind of elementary operations
by rows with

det[4n A&14n+4nKn4n],

where in this case

h(z) :=.n(z).

On doing these elementary operations by rows we find that

det[4n+1A&14n+1+4n+1Kn+14n+1]

det[4nA&14n+4nKn4n]

=

`
m

j=1

`

lj

s=1

. (s)
n (zj)

.n(zj)
det[Bn+1+Hn+1]

`
m

j=1

`

lj

s=1

. (s)
n+1(zj)

.n+1(zj)
det[Bn+Hn]

. (25)

Here Bn is a matrix which can be described by blocks. The r, s block is the
(lr+1)_(ls+1) matrix

\_
br, s

i, j

. ( j)
n (zs) . (i)

n (zr)
+ :

i

k=1

F(i, k)
br, s

i&k, j

. ( j)
n (zs) . (i&k)

n (zr)&
. (i)

n (zr)
.n(zr) +

j=0, ..., ls

i=0, ..., lr

,

where br, s
i, j are constants,

F(i, k)=\ i
k+ .n(zr)

. (i&k)
n (zr)
. (i)

n (zr) \ 1
.n(zr)+

(k)

. (26)

Also Hn is a matrix which can be described by blocks. The r, s block is the
(lr+1)_(ls+1) matrix

\ �i

�wi

K ( j, 0)
n (zs , w)

. ( j)
n (zs) .n(w) }w=zr

+
j=0, ..., ls

i=0, ..., lr

,

where r, s=1, ..., m. Notice that

�i

�wi

K ( j, 0)
n (zs , w)

. ( j)
n (zs) .n(w) }w=zr

=

� j

�z j

�i

�w i

Kn(z, w)
.n(w) }w=zr

. ( j)
n (z) }

z=zs

for 1�r, s, �m, 0� j�ls and 0�i�lr .
Before we can find the limit in (25) as n tends to infinity, we have to

carry out transformations similar to those above but by columns on the
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determinants det[Bn+1+Hn+1] and det[Bn+Hn]. We describe these
elementary operations on det[Bn+1+Hn+1]. Those corresponding to
det[Bn+Hn] are the same with n+1 substituted by n.

Let 1�k�ls and 1�s�m. Add to the � s&1
p=1 (lp+1)+1+k column of

det[Bn+1+Hn+1] a linear combination of the preceeding k&1 columns
with the coefficients defined in (23) with

h(z) :=.n+1(z)

evaluated at z=zs and then multiply the resulting column by

h(k)(z)
h(z)

evaluated at z=zs .
After carrying out similar operations on det[Bn+Hn], we find that

`
m

j=1

`

lj

s=1

.(s)
n (zj)

.n(zj)
det[Bn+1+Hn+1]

`
m

j=1

`

lj

s=1

. (s)
n+1(zj)

.n+1(zj)
det[Bn+Hn]

=

`
m

j=1

`

lj

s=1
}.

(s)
n (z j)

.n(zj) }
2

`
m

j=1

`

lj

s=1
}.

(s)
n+1(zj)

.n+1(zj) }
2

det[Cn+1+Rn+1]
det[Cn+Rn]

,

where Cn is a block matrix. The r, s block is the (lr+1)_(ls+1) matrix
whose (i, j) entry for i=0, ..., lr and j=0, ..., ls is given by

. ( j)
n (zs)

.n(zs) __
br, s

i, j

. ( j)
n (zs) . (i)

n (zr)
+ :

i

k=1

F(i, k)
br, s

i&k, j

. ( j)
n (zs) . (i&k)

n (zr)&
. (i)

n (zr)
.n(zr)

+ :
j

u=1

F� ( j, u) _
br, s

i, j&u

. ( j&u)
n (zs) . (i)

n (zr)
+ :

i

k=1

F(i, k)
br, s

i&k, j&u

. ( j&u)
n (zs) .(i&k)

n (zr)&
_

. (i)
n (zr)

.n(zr) & ,

where

F� ( j, u)=\ j
u+ .n(zs)

. ( j&u)
n (zs)
. ( j)

n (zs) \ 1
.n(zs)+

(u)

,
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and F(i, k) is given by (26). Notice that the elements of the matrix Cn are
o(1), and Rn is a block matrix. The r, s block of Rn is the (lr+1)_(ls+1)
matrix

\ � j

�z j

� i

�wi _ Kn(z, w)
.n(z) .n(w)& } z=zs

w=zr

+
j=0, ..., ls

i=0, ..., lr

,

where r, s=1, ..., m. Taking into account Lemma 1, we obtain

lim
n � �

det[Cn+Rn]= lim
n � �

det[o(1)+Rn]=|Fm |{0,

where Fm is the matrix defined in (15) and |Fm | denotes its determinant.
From this and using (6), we have

lim
n � � \kn

#n +
2

= `

j=0, ..., li
i=1, ..., m

|z i |
2,

lim
n � �

kn

#n
= `

m

i=1

|zi |
li+1.

Using similar arguments, we can obtain the asymptotic behavior of
�n(z)�.n(z). On account of (21) and (3) this reduces to finding the limit of

det _A&1+Kn&
Kn(z, Z)

.n(z)

T

.n(Z)&
det[A&1+Kn]

=
det _4n A&14n+4nKn4n&4n

Kn(z, Z)
.n(z)

T

.n(Z) 4n&
det[4nA&14n+4nKn 4n]

.

In

det _4n A&14n+4nKn 4n&4n
Kn(z, Z)

.n(z)

T

.n(Z) 4n&
add to the �s&1

p=1 (lp+1)+1+k row, for 1�k�ls and 1�s�m, a linear
combination of the preceding k&1 rows with the coefficients defined in
(23) with

h(z) :=.n(z)

evaluated at z=zs , and multiply the resulting row by

h(k)(z)
h(z)
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evaluated at z=zs . The resulting determinant is transformed by columns in
similar form. The same transformations by rows and columns are made on
det[4n A&14n+4nKn4n].

Taking into account (24), we find that

lim
n � �

det _4nA&14n+4nKn4n&4n
Kn(z, Z)

.n(z)

T

.n(Z) 4n&
det[4nA&14n+4nKn4n]

=
f (z)
|Fm |

,

where Fm is the matrix defined in (15) and f (z) is the determinant of a
block matrix whose r, s block is the (lr+1)_(ls+1) matrix whose first
column is equal to

\
g(zs , zr )& g(z, zr )

g(0, 1)(zs , zr )& g(0, 1)(z, zr )
b

g(0, lr)(zs , zr )& g(0, lr)(z, zr )
+

and the rest of this matrix can be described as

(g(i&1, j&1)(zs , zr ))
j=2, ..., ls+1
i=1, ..., lr+1 ,

where r, s=1, ..., m. If we subtract to the � i&1
s=1 (ls+1)+1 column of f (z)

its first column for i=2, ..., m, we obtain that the dependence on the
variable z only appears in the first column of this determinant. From this,
if we define

p(z) :=f (z) `
m

j=1

(zzj &1) lj+1 (27)

it follows immediately that p is a polynomial in the variable z of degree at
most �m

i=1 (li+1). Furthermore,

f (s)(z)| z=zi
=0, 0�s�l i , i=1, ..., m.

This implies that

p(s)(z)| z=zi
=0, 0�s�l i , i=1, ..., m.

From this, we deduce that either p is the polynomial identically equal to
zero, or there exists a non-zero constant C # C such that

p(z)=C `
m

i=1

(z&zi)
li+1.
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Let us calculate p(�m
i=1

(li+1))(z) using Leibniz's formula on (27). If we take
into account the equality

\`
m

j=1

(zzj &1) lj+1+
(�m

i=1
(li+1))

=\ :
m

i=1

(li+1)+! `
m

j=1

zj
lj+1

and that

`
m

j=1

(zzj &1) lj+1 g(0, s)(z, zi ), i=1, ..., m, s=0, ..., li

is a polynomial in the variable z of degree �n
i=1 (li+1)&1 (therefore its

�m
i=1 (l i+1) derivative is identically zero), it holds that p(z) (�m

i=1
(l+1)) is

equal to

\ :
m

i=1

(l i+1)+! `
m

j=1

zj
lj+1 |Fm |{0.

Therefore,

f (z)= `
m

i=1
\zi (z&zi)

(zzi &1)+
li+1

|Fm |.

From this, (3), and (21), we immediately deduce

lim
n � �

�n(z)
.n(z)

= `
m

i=1
\ zi (z&zi)

|z i | (zzi &1)+
li+1

,

which is the same as (2) for k=0. For arbitrary k, formula (2) follows by
induction on account of the identity

q
q$ \

p
q+

$
=

p$
q$

&
p
q

.

Now, we can also prove that

�n(z)
.n*(z)

��0, |z|<1.

In fact, from (19), we have

kn

#n

�n(z)
.n*(z)

=
.n(z)
.n*(z)

&.n(Z)[IM+AKn]&1 A
Kn(z, Z)

.n*(z)

T

.
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Using Lemma 4, we see that

kn

#n

�n(z)
.n*(z)

=
.n(z)
.n*(z)

&1+
det _IM+AKn&A

Kn(z, Z)
.n*(z)

T

.n(Z)&
det[IM+AKn]

.

Using the same kind of arguments as before and taking into account
Lemma 2, we can prove that

det _A&1+Kn&
Kn(z, Z)

.n*(z)

T

.n(Z)&
det[A&1+Kn]

��1, |z|<1.

From this the statement of Theorem 1 follows. K

Remark. We point out that the matrix Fm defined in (15) is not only a
non-singular but a positive definite matrix because we have obtained it as
a limit of positive definite matrices.

Remark. Taking into account that (22) is still true when A is positive
semidefinite, we can consider A to be a block diagonal matrix of the form

A=\
A1

0l2+1_l1+1

b
0lm+1_l1+1

0l1+1_l2+1

A2

b
0lm+1_l2+1

} } }
} } }
} } }
} } }

0l1+1_lm+1

0 l2+1_lm+1

b
Am

+ , (28)

where Ai is an (li+1)_(li+1) positive semidefinite matrix of rank ni for
i, j=1, ..., m. In this case, we conjecture that

lim
n � �

kn

#n
= `

m

i=1

|zi |
ni,

�(k)
n (z)

. (k)
n (z)

�� `
m

i=1
\ zi (z&zi)

|z i | (zzi &1)+
ni

, |z|>1, k=0, 1, ...,

and

�n(z)
.n*(z)

��0, |z|<1.

An immediate consequence would be

�(k)
n+1(z)

� (k)
n (z)

��z,
�(k+1)

n (z)
n� (k)

n (z)
��

1
z

on the region [z # C: |z|>]"[zj]m
j=1 , for k=0, 1, ....
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